A localized momentum constraint for non-equilibrium molecular dynamics simulations
نویسندگان
چکیده
منابع مشابه
On multiscale non-equilibrium molecular dynamics simulations
In this work, we set forth a multiscale non-equilibrium molecular dynamics (MS-NEMD) model. The main objectives of MS-NEMD model are: (1) establishing a rigorous NEMD that provides direct threedimensional simulations of thermal–mechanical motions at atomistic scale, and (2) providing a general computational paradigm for non-equilibrium multiscale simulations. The proposed MS-NEMD combines a coa...
متن کاملNon-equilibrium Molecular Dynamics
Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and nonequilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws an...
متن کاملDynamical Non-Equilibrium Molecular Dynamics
In this review, we discuss the Dynamical approach to Non-Equilibrium Molecular Dynamics (D-NEMD), which extends stationary NEMD to time-dependent situations, be they responses or relaxations. Based on the original Onsager regression hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald, the approach permits one to separate the problem of dynamical evolution from t...
متن کاملDetermining equilibrium constants for dimerization reactions from molecular dynamics simulations
With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and dissociation events, their binding free energy is readil...
متن کاملTransport properties of a reacting binary fluid, from non-equilibrium molecular dynamics simulations
in a temperature gradient, see Fig.1. This is of our knowledge the first molecular dynamics study of a reacting system submitted to non-equilibrium conditions. The reaction, which is diffusion controlled, was investigated at and close to local chemical equilibrium. The transport properties are determines; i.e. diffusion, thermal conductivity and the coupling between transport of heat and mass. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2015
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4907880